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INTRODUCTION

Background. Urban sprawl refers to the uncontrolled expansion of urban areas into rural or

natural land, characterized by low-density residential development, increased reliance on

automobiles, and fragmented land use patterns (Egidi et al., 2020). This phenomenon poses

significant environmental and social challenges, including the loss of wildlife habitats, increased

pollution, and higher infrastructure costs. Austin, Texas, is a prominent example of urban sprawl,

especially given its rapid population growth over the past decade. According to the U.S. Census

Bureau, Austin's population increased by nearly 22% from 2010 to 2020, making it one of the

fastest-growing cities in the US. This explosive growth has resulted in extensive suburban

development, transforming areas of natural and agricultural land into residential, commercial,

and industrial zones.

Urban sprawl presents challenges for urban planners, environmentalists, and

policymakers. Urban planners must understand land cover changes to develop efficient

infrastructure and sustainable communities. Environmentalists are concerned with biodiversity

loss, increased greenhouse gas emissions, and natural resource degradation due to sprawling

development (Genovese et al., 2023). Policymakers must balance economic growth demands
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with environmental protection to maintain residents' quality of life. The relevance of studying

urban sprawl in Austin lies in its implications for sustainable development. Effective urban

growth management requires accurate data and comprehensive analysis to mitigate adverse

environmental impacts and promote smart growth strategies. According to the Environmental

Protection Agency (EPA), smart growth approaches, including higher-density development and

mixed-use zoning, can help combat the negative effects of urban sprawl by preserving open

spaces and enhancing urban areas' livability (“Smart Growth”, 2021).

Objectives. The primary objective of this study is to analyze the impact of urban expansion on

land cover in Austin, Texas, over the period from 2018 to 2024, utilizing Sentinel-2 imagery.

This research aims to document how urban sprawl has transformed the natural landscape and

influenced natural resources and land use. Through this objective, this project aims to offer a

detailed temporal analysis of land cover variations, contributing to the discourse on sustainable

urban management and environmental stewardship in Austin. The insights gained will not only

enhance our understanding of urban sprawl in Austin but could also serve as a model for other

rapidly growing cities facing similar challenges.

METHODS

Study Area. Austin, Texas, is renowned for its vibrant culture, dynamic economy, and rapid

population growth. Geographically, Austin is situated on the edge of the Texas Hill Country and

is bisected by the Colorado River, contributing to its diverse topography and rich natural

resources (“Austin”, 2024). Over the past decade, Austin has experienced significant urban

sprawl, driven by a booming tech industry and an influx of new residents. The city's tech boom,

often referred to as the rise of "Silicon Hills," has attracted numerous technology and
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development companies, transforming Austin into a major tech hub (2024). This growth has led

to the expansion of urban areas into surrounding rural and natural landscapes, making it an ideal

case study for examining the impacts of urban sprawl on land cover and natural resources.

Data. The data used in this study consists of Sentinel-2, Level 2A (L2A) imagery, focusing on

timeframes from April 2018 and April 2024. Sentinel-2, a mission under the European Space

Agency’s Copernicus Programme, provides high-resolution multispectral imagery, ideal for

monitoring changes in land cover due to urban expansion (Phiri et al., 2020). The chosen datasets

underwent preprocessing steps, including atmospheric correction to mitigate atmospheric effects

on the imagery. To ensure data consistency and accuracy, images were filtered to select those

with less than 30% cloud cover, identifying clear days in April 2018 and 2024 for analysis.

Classification Scheme. The classification scheme focused on various land cover classes:

residential, commercial, forest, grass, roads, water, stream or wet vegetation, bare soil,

construction, and shrubs (sparse vegetation and vegetation mixed with soil). A parallelepiped

classification method was employed due to its simplicity and effectiveness in handling

high-dimensional data and spectral variability within urban environments (Didore et al., 2021).

To enhance classification accuracy, the images were displayed using various false color

composites. Natural-like rendering utilized Short Wave Infrared (Band 12, 2190 nm), Visible and

Near Infrared (Band 8, 842 nm), and Green (Band 3, 560 nm) to distinctly display healthy

vegetation in bright green, grasslands in green, barren soil in pink, and urban areas in magenta.

Soil moisture and geological features were highlighted using Short Wave Infrared bands: Band

12 (2190 nm), Band 11 (1610 nm), and Band 8 (842 nm). In the false color composite using

Visible and Near Infrared (Band 8, 842 nm), Red (Band 4, 665 nm), and Green (Band 3, 560
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nm), urban areas appeared magenta, water bodies were depicted in deep blue, and vegetation

varied in shades from green to red depending on health and density.

Analytical Methods. Initially, for each land cover class, 10-15 regions of interest (ROIs) were

collected. The histograms of each band were examined to assess distribution normality. Skewed

or multimodal distributions led to reviewing and refining the ROIs to ensure accurate class

representation.

Subsequently, normally distributed ROIs were merged, and the parallelepiped

classification was executed. For the 2018 image, class standard deviations from the mean were

thresholded as follows: grass (2.5), construction (2), road (1.3), wet vegetation (1.5), commercial

(2.2), and residential (2). For the 2024 image, thresholds were adjusted to: commercial (1.2),

roads (1.7), residential (2.5), wet vegetation (1), shrub (2.5), and forest (4). These adjustments

were necessary to account for the spectral variability and changes in land cover over time,

ensuring more accurate results. Classes not listed were left at the default 3 standard deviations.

Fig. 1: Parallelepiped Classification of Austin, TX in 2018



5

Fig. 2: Parallelepiped Classification of Austin, TX in 2024

Ground Truth. For this study, the accuracy of the classified satellite images was assessed using a

post-classification random sampling method. After the completion of the classification process,

50 random points were selected across the entire dataset to ensure they were not included in the

training set. This method helps in providing an unbiased assessment of the classifier’s

performance on new, unseen data. The points were chosen to represent a diverse range of classes

and geographical features present in the study area. This approach tries to ensure that the

validation data are representative of the different land cover types identified in the classification

scheme. The selected points were then used to evaluate the accuracy of the classification, aiding

in the determination of the model’s ability to generalize across different landscapes and

conditions.

RESULTS AND DISCUSSION

Results. Between 2018 and 2024, significant changes in land cover were observed in Austin.

This period marked a substantial increase in urban areas, particularly in residential and
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commercial land use. Residential zones expanded from 19.495% to 23.74%, and commercial

areas grew from 5.515% to 7.89%, underscoring Austin's rapid urban sprawl influenced by its

booming economy and population growth. Concurrently, the area designated for construction

more than doubled, increasing from 5.49% to 12.432%, reflecting ongoing development projects.

This urban expansion came at a considerable environmental cost, notably a reduction in

forest areas, which declined sharply from 7.629% to 3.065%. This decrease is indicative of

potential deforestation or repurposing of land for development purposes. Additionally, shrub

areas significantly increased from 8.272% to 19.933%, likely a result of secondary succession

occurring in cleared forest areas, marking a transitional phase in land cover prior to potential

urban development. Infrastructure developments, particularly roads, also saw an increase from

12.257% to 17.634%, suggesting enhanced efforts to improve city connectivity in line with

residential and commercial growth. In contrast, minor decreases were noted in water bodies and

stream vegetation,

which dropped from

1.269% to 1.227% and

4.572% to 1.047%,

respectively, possibly

affected by the

encroaching urban

landscape.

Fig. 3: Change in percent land cover distribution from 2018 to 2024 in Austin, TX.
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Accuracy and Challenges. Maintaining consistent classification between images was challenging

due to spectral similarities between certain classes. For instance, agricultural and recreational

grasses were combined into one category because of their similar spectral reflectance

characteristics, primarily their high water needs, which caused confusion during classification.

Residential areas often consisted of mixed pixels reflecting rooftops, vegetation, and various

road materials. Bare soil, road, construction, and commercial areas also exhibited overlap,

especially in road classification due to diverse materials. Construction areas typically appeared

brighter than bare soil, as they included both buildings and drier soils. Bare soil was

characterized by cleared land or fallow agricultural fields, sometimes wet and dark.

As aforementioned, the classifications were executed using the parallelepiped

classification, a supervised classification. The effectiveness of the classifier for both images was

evaluated using confusion matrices, which provided a detailed breakdown of performance across

all classes. For the 2018 dataset, the classifier achieved an overall accuracy of 76.4% and a

Kappa statistic of 0.738 as seen in Table 1, indicating substantial agreement between the

classified results and the reference data, well above chance level. This level of accuracy suggests

that the classifier performed effectively, with the majority of the area being correctly classified.

In comparison, the 2024 dataset, Table 2, showed a decrease in both overall accuracy and Kappa

statistic, achieving 70.2% and 0.669 respectively. These values, while still indicating substantial

agreement, suggest a slight reduction in classifier performance, possibly due to changes in the

landscape, changes in training data, or differences in environmental conditions at the time of

satellite image capture. The confusion matrix from each dataset revealed specific areas where

misclassification occurred, particularly between classes with similar spectral characteristics.



8

Table 1: 2018 Confusion Matrix

Table 2: 2024 Confusion Matrix

Relation to Objectives. The findings of this study effectively align with the initial objectives,

providing a detailed examination of urban expansion and its impact on land cover in Austin,

Texas, from 2018 to 2024. Through the analysis of Sentinel-2 imagery, this research has

successfully documented the significant transformation of Austin's natural landscape due to

urban sprawl. The increase in residential and commercial areas by approximately 4.245% and
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2.375% respectively, alongside a more than doubling of construction sites, illustrates a dynamic

shift towards urbanization.

This substantial change in land use has led to a marked reduction in forested areas, from

7.629% to 3.065%, highlighting a pressing concern for environmental stewardship in the region.

The results underscore the challenges faced by Austin in managing urban growth without

compromising its natural resources. Again, the expansion of shrub areas likely indicates

secondary succession which may temporarily fill the gaps left by deforestation but also suggests

a potential for future urban development.

CONCLUSION

Key Findings. This study has mapped and analyzed the impact of urban expansion on land cover

in Austin, Texas, over a six-year period from 2018 to 2024. The significant findings reveal that

urban sprawl has led to a substantial increase in residential, commercial, and construction areas,

with residential zones expanding by nearly 4.25% and construction sites more than doubling.

These developments have come at the cost of natural landscapes, most notably with a marked

decrease in forested areas by over 4.5%, highlighting significant environmental concerns.

Furthermore, the transition in land use is indicated by the increase in shrub areas,

suggesting secondary succession in regions previously occupied by forests. This reflects a

landscape in flux, potentially setting the stage for future urban development. The study

underscores the challenges of managing urban growth while preserving natural resources,

emphasizing the need for sustainable urban planning practices.
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Future Research. To advance the precision of land cover classification in future studies, I would

like to explore the application of various sophisticated machine learning classifiers. Techniques

such as Random Forests, Support Vector Machines, and Convolutional Neural Networks have

shown impressive results in other geographic contexts for their ability to handle complex

datasets and improve classification accuracy. These methods could effectively manage the

spectral variability and mixed pixel issues inherent in high-resolution imagery, which were

limitations in the current study using more traditional methods.

Additionally, integrating higher resolution imagery would allow for finer detail in

capturing land cover changes, particularly in rapidly urbanizing regions. This could provide

deeper insights into small-scale environmental impacts of urban sprawl, such as the

encroachment on ecologically sensitive areas and changes in microhabitats. Employing these

advanced classifiers and higher resolution datasets would not only enhance the accuracy of

detecting subtle changes but also improve our understanding of the interactions between urban

development and natural landscapes.
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